Mac OS X: Find the maximum unfragmented packet size (MTU) to reach a host

If you have ever tried to use jumbo packets, or trace a weird slowness on the network – one of the things that frequently comes up is packet fragmentation. This is basically where a source machine is sending bigger packets than can be consumed along its pathway to a destination machine. This means the packets will need to be split and essentially causes a host of performance issues.

So how do you diagnose this? Well Ping is your friend. It allows you to flag packets to not be fragmented and specify a minimum and maximum packet size. Using this you can simply loop through test packet sizes until a packet fails and then you have your MTU.

The command below sends packets from 1350 to 1520 and increases the packet size by 10 bytes each time.

ping -g 1350 -G 1520 -h 10 -D andrewbaker.ninja

Mac OS X: Using nmap or sslscan to review the ciphers supported by a website

To retrieve a list of the SSL/TLS cipher suites a particular website offers you can either use sslscan or nmap

brew install sslscan
sslscan andrewbaker.ninja
Version: 2.0.15
OpenSSL 3.0.7 1 Nov 2022

Connected to 13.244.140.33

Testing SSL server andrewbaker.ninja on port 443 using SNI name andrewbaker.ninja

  SSL/TLS Protocols:
SSLv2     disabled
SSLv3     disabled
TLSv1.0   enabled
TLSv1.1   enabled
TLSv1.2   enabled
TLSv1.3   enabled

  TLS Fallback SCSV:
Server supports TLS Fallback SCSV

  TLS renegotiation:
Secure session renegotiation supported

  TLS Compression:
OpenSSL version does not support compression
Rebuild with zlib1g-dev package for zlib support

  Heartbleed:
TLSv1.3 not vulnerable to heartbleed
TLSv1.2 not vulnerable to heartbleed
TLSv1.1 not vulnerable to heartbleed
TLSv1.0 not vulnerable to heartbleed

  Supported Server Cipher(s):
Preferred TLSv1.3  256 bits  TLS_AES_256_GCM_SHA384        Curve 25519 DHE 253
Accepted  TLSv1.3  256 bits  TLS_CHACHA20_POLY1305_SHA256  Curve 25519 DHE 253
Accepted  TLSv1.3  128 bits  TLS_AES_128_GCM_SHA256        Curve 25519 DHE 253
Preferred TLSv1.2  256 bits  ECDHE-ECDSA-AES256-GCM-SHA384 Curve 25519 DHE 253
Accepted  TLSv1.2  128 bits  ECDHE-ECDSA-AES128-GCM-SHA256 Curve 25519 DHE 253
Accepted  TLSv1.2  256 bits  ECDHE-ECDSA-AES256-SHA384     Curve 25519 DHE 253
Accepted  TLSv1.2  256 bits  ECDHE-ECDSA-CAMELLIA256-SHA384 Curve 25519 DHE 253
Accepted  TLSv1.2  128 bits  ECDHE-ECDSA-AES128-SHA256     Curve 25519 DHE 253
Accepted  TLSv1.2  128 bits  ECDHE-ECDSA-CAMELLIA128-SHA256 Curve 25519 DHE 253
Accepted  TLSv1.2  256 bits  ECDHE-ECDSA-CHACHA20-POLY1305 Curve 25519 DHE 253
Accepted  TLSv1.2  256 bits  ECDHE-ECDSA-AES256-CCM8       Curve 25519 DHE 253
Accepted  TLSv1.2  256 bits  ECDHE-ECDSA-AES256-CCM        Curve 25519 DHE 253
Accepted  TLSv1.2  256 bits  ECDHE-ECDSA-ARIA256-GCM-SHA384 Curve 25519 DHE 253
Accepted  TLSv1.2  128 bits  ECDHE-ECDSA-AES128-CCM8       Curve 25519 DHE 253
Accepted  TLSv1.2  128 bits  ECDHE-ECDSA-AES128-CCM        Curve 25519 DHE 253
Accepted  TLSv1.2  128 bits  ECDHE-ECDSA-ARIA128-GCM-SHA256 Curve 25519 DHE 253
Accepted  TLSv1.2  256 bits  ECDHE-ECDSA-AES256-SHA        Curve 25519 DHE 253
Accepted  TLSv1.2  128 bits  ECDHE-ECDSA-AES128-SHA        Curve 25519 DHE 253
Preferred TLSv1.1  256 bits  ECDHE-ECDSA-AES256-SHA        Curve 25519 DHE 253
Accepted  TLSv1.1  128 bits  ECDHE-ECDSA-AES128-SHA        Curve 25519 DHE 253
Preferred TLSv1.0  256 bits  ECDHE-ECDSA-AES256-SHA        Curve 25519 DHE 253
Accepted  TLSv1.0  128 bits  ECDHE-ECDSA-AES128-SHA        Curve 25519 DHE 253

  Server Key Exchange Group(s):
TLSv1.3  128 bits  secp256r1 (NIST P-256)
TLSv1.3  192 bits  secp384r1 (NIST P-384)
TLSv1.3  260 bits  secp521r1 (NIST P-521)
TLSv1.3  128 bits  x25519
TLSv1.3  224 bits  x448
TLSv1.2  128 bits  secp256r1 (NIST P-256)

  SSL Certificate:
Signature Algorithm: sha256WithRSAEncryption
ECC Curve Name:      prime256v1
ECC Key Strength:    128

Subject:  andrewbaker.ninja
Altnames: DNS:andrewbaker.ninja, DNS:www.andrewbaker.ninja
Issuer:   R3

Not valid before: Nov  4 23:00:13 2022 GMT
Not valid after:  Feb  2 23:00:12 2023 GMT

alternatively you can just use nmap (note: i use “-e en0” to bypass zscaler):

% brew install nmap
% nmap --script ssl-enum-ciphers -p 443 andrewbaker.ninja -e en0
Starting Nmap 7.93 ( https://nmap.org ) at 2022-11-19 22:30 SAST
Nmap scan report for andrewbaker.ninja (13.244.140.33)
Host is up (0.014s latency).
rDNS record for 13.244.140.33: ec2-13-244-140-33.af-south-1.compute.amazonaws.com

PORT    STATE SERVICE
443/tcp open  https
| ssl-enum-ciphers:
|   TLSv1.0:
|     ciphers:
|       TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA (ecdh_x25519) - A
|     compressors:
|       NULL
|     cipher preference: server
|   TLSv1.1:
|     ciphers:
|       TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA (ecdh_x25519) - A
|     compressors:
|       NULL
|     cipher preference: server
|   TLSv1.2:
|     ciphers:
|       TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_256_CCM (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_128_CCM (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256 (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA (ecdh_x25519) - A
|       TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA (ecdh_x25519) - A
|     compressors:
|       NULL
|     cipher preference: server
|   TLSv1.3:
|     ciphers:
|       TLS_AKE_WITH_AES_256_GCM_SHA384 (ecdh_x25519) - A
|       TLS_AKE_WITH_CHACHA20_POLY1305_SHA256 (ecdh_x25519) - A
|       TLS_AKE_WITH_AES_128_GCM_SHA256 (ecdh_x25519) - A
|     cipher preference: server
|_  least strength: A

Nmap done: 1 IP address (1 host up) scanned in 1.52 seconds

Another variant (including cert dates, again “-e en0” is used to bypass zscaler):

$ nmap -e en0 --script ssl-cert -p 443 andrewbaker.ninja
Starting Nmap 7.93 ( https://nmap.org ) at 2023-06-23 18:41 SAST
Nmap scan report for andrewbaker.ninja (13.244.140.33)
Host is up (0.019s latency).
rDNS record for 13.244.140.33: ec2-13-244-140-33.af-south-1.compute.amazonaws.com

PORT    STATE SERVICE
443/tcp open  https
| ssl-cert: Subject: commonName=andrewbaker.ninja
| Subject Alternative Name: DNS:andrewbaker.ninja, DNS:www.andrewbaker.ninja
| Issuer: commonName=Zscaler Intermediate Root CA (zscaler.net) (t) /organizationName=Zscaler Inc./stateOrProvinceName=California/countryName=US
| Public Key type: rsa
| Public Key bits: 2048
| Signature Algorithm: sha256WithRSAEncryption
| Not valid before: 2023-06-17T02:07:23
| Not valid after:  2023-07-01T02:07:23
| MD5:   a20b5ae2900569601de116b49b7a29bd
|_SHA-1: 27d681607f0ccffbec6e303d14d6d41fd24c0851

Nmap done: 1 IP address (1 host up) scanned in 0.59 seconds

Mac OS X or Linux: Use terminal to get http/https response headers of a url using the curl command

Web devs need to know the http headers their apps/webpages. This can be easily achieved using a browser plugin for Chrome or Firefox. But I prefer to use the command terminal, and curl makes this really easy.

curl -I andrewbaker.ninja
HTTP/1.1 302 Found
Date: Thu, 17 Nov 2022 14:01:53 GMT
Server: Apache
X-Frame-Options: SAMEORIGIN
Location: https://andrewbaker.ninja/
Connection: close
Content-Type: text/html; charset=iso-8859-1

## Alternative
url --head https://andrewbaker.ninja
HTTP/1.1 200 OK
Date: Thu, 17 Nov 2022 14:08:36 GMT
Server: Apache
X-Powered-By: PHP/7.3.18
Link: <https://andrewbaker.ninja/wp-json/>; rel="https://api.w.org/", <https://andrewbaker.ninja/wp-json/wp/v2/pages/78>; rel="alternate"; type="application/json", <https://andrewbaker.ninja/>; rel=shortlink
X-Frame-Options: SAMEORIGIN
Cache-Control: max-age=0, no-cache
Connection: close
Content-Type: text/html; charset=UTF-8

Macbook: Exploring DNS using DIG (Domain Information Groper)

DIG is an awesome command line utility to explore DNS. Below is a quick guide to get you started.

Query Specific Name Server

By default, if no name server is specified, dig will use the servers listed in /etc/resolv.conf file. To view the default server use:

% cat /etc/resolv.conf
#
# macOS Notice
#
# This file is not consulted for DNS hostname resolution, address
# resolution, or the DNS query routing mechanism used by most
# processes on this system.
#
# To view the DNS configuration used by this system, use:
#   scutil --dns
#
# SEE ALSO
#   dns-sd(1), scutil(8)
#
# This file is automatically generated.
#
nameserver 100.64.0.1

You can override the name server against which the query will be executed, use the @ (at) symbol followed by the name server IP address or hostname.

For example, to query the Google name server (8.8.8.8) for information about andrewbaker.ninja you would use:

% dig andrewbaker.ninja @8.8.8.8

; <<>> DiG 9.10.6 <<>> andrewbaker.ninja @8.8.8.8
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 33993
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
;andrewbaker.ninja.		IN	A

;; ANSWER SECTION:
andrewbaker.ninja.	300	IN	A	13.244.140.33

;; Query time: 1099 msec
;; SERVER: 8.8.8.8#53(8.8.8.8)
;; WHEN: Thu Nov 17 11:26:55 SAST 2022
;; MSG SIZE  rcvd: 62

Get a Short Answer

To get a short answer to your query, use the +short option:

% dig andrewbaker.ninja +short
13.244.140.33

Query a Record Type

Dig allows you to perform any valid DNS query by appending the record type to the end of the query. In the following section, we will show you examples of how to search for the most common records, such as A (the IP address), CNAME (canonical name), TXT (text record), MX (mail exchanger), and NS (name servers).

Querying A records

To get a list of all the address(es) for a domain name, use the a option:

% dig +nocmd andrewbaker.ninja a +noall +answer
andrewbaker.ninja.	156	IN	A	13.244.140.33

Querying CNAME records

To find the alias domain name use the cname option:

dig +nocmd mail.google.com cname +noall +answer
mail.google.com.	553482	IN	CNAME	googlemail.l.google.com.

Querying TXT records

Use the txt option to retrieve all the TXT records for a specific domain:

% dig +nocmd google.com txt +noall +answer
google.com.		3600	IN	TXT	"globalsign-smime-dv=CDYX+XFHUw2wml6/Gb8+59BsH31KzUr6c1l2BPvqKX8="
google.com.		3600	IN	TXT	"MS=E4A68B9AB2BB9670BCE15412F62916164C0B20BB"
google.com.		3600	IN	TXT	"docusign=1b0a6754-49b1-4db5-8540-d2c12664b289"
google.com.		3600	IN	TXT	"onetrust-domain-verification=de01ed21f2fa4d8781cbc3ffb89cf4ef"
google.com.		3600	IN	TXT	"apple-domain-verification=30afIBcvSuDV2PLX"
google.com.		3600	IN	TXT	"google-site-verification=TV9-DBe4R80X4v0M4U_bd_J9cpOJM0nikft0jAgjmsQ"
google.com.		3600	IN	TXT	"facebook-domain-verification=22rm551cu4k0ab0bxsw536tlds4h95"
google.com.		3600	IN	TXT	"webexdomainverification.8YX6G=6e6922db-e3e6-4a36-904e-a805c28087fa"
google.com.		3600	IN	TXT	"docusign=05958488-4752-4ef2-95eb-aa7ba8a3bd0e"
google.com.		3600	IN	TXT	"v=spf1 include:_spf.google.com ~all"
google.com.		3600	IN	TXT	"atlassian-domain-verification=5YjTmWmjI92ewqkx2oXmBaD60Td9zWon9r6eakvHX6B77zzkFQto8PQ9QsKnbf4I"
google.com.		3600	IN	TXT	"google-site-verification=wD8N7i1JTNTkezJ49swvWW48f8_9xveREV4oB-0Hf5o"

Querying MX records

To get a list of all the mail servers for a specific domain using the mx option:

% dig +nocmd google.com mx +noall +answer
google.com.		48	IN	MX	10 smtp.google.com.

Querying All Records

Use the any option to get a list of all DNS records for a specific domain:

dig +nocmd andrewbaker.ninja any +noall +answer
andrewbaker.ninja.	300	IN	A	13.244.140.33
andrewbaker.ninja.	21600	IN	NS	ns-1254.awsdns-28.org.
andrewbaker.ninja.	21600	IN	NS	ns-1514.awsdns-61.org.
andrewbaker.ninja.	21600	IN	NS	ns-1728.awsdns-24.co.uk.
andrewbaker.ninja.	21600	IN	NS	ns-1875.awsdns-42.co.uk.
andrewbaker.ninja.	21600	IN	NS	ns-491.awsdns-61.com.
andrewbaker.ninja.	21600	IN	NS	ns-496.awsdns-62.com.
andrewbaker.ninja.	21600	IN	NS	ns-533.awsdns-02.net.
andrewbaker.ninja.	21600	IN	NS	ns-931.awsdns-52.net.
andrewbaker.ninja.	900	IN	SOA	ns-1363.awsdns-42.org. awsdns-hostmaster.amazon.com. 1 7200 900 1209600 86400

Tracing DNS Resolution

DNS query resolution follows a simple recursive process outlined below:

  1. You as the DNS client (or stub resolver) query your recursive resolver for www.example.com.
  2. Your recursive resolver queries the root name server for www.example.com.
  3. The root name server refers your recursive resolver to the .com Top-Level Domain (TLD) authoritative server.
  4. Your recursive resolver queries the .com TLD authoritative server for www.example.com.
  5. The .com TLD authoritative server refers your recursive server to the authoritative servers for example.com.
  6. Your recursive resolver queries the authoritative servers for www.example.com, and receives 1.2.3.4 as the answer.
  7. Your recursive resolver caches the answer for the duration of the time to live (TTL) specified on the record, and returns it to you.

Below is an example trace:

% dig +trace andrewbaker.ninja

; <<>> DiG 9.10.6 <<>> +trace andrewbaker.ninja
;; global options: +cmd
.			62163	IN	NS	g.root-servers.net.
.			62163	IN	NS	j.root-servers.net.
.			62163	IN	NS	e.root-servers.net.
.			62163	IN	NS	l.root-servers.net.
.			62163	IN	NS	d.root-servers.net.
.			62163	IN	NS	a.root-servers.net.
.			62163	IN	NS	b.root-servers.net.
.			62163	IN	NS	i.root-servers.net.
.			62163	IN	NS	m.root-servers.net.
.			62163	IN	NS	h.root-servers.net.
.			62163	IN	NS	c.root-servers.net.
.			62163	IN	NS	k.root-servers.net.
.			62163	IN	NS	f.root-servers.net.
.			62163	IN	RRSIG	NS 8 0 518400 20221129170000 20221116160000 18733 . MbE0OpdxRbInDK0olZm8n585L4oPq3q8iVbn/O0S7bfelS9wauhHQnnY Ifuj3D6Owp6R7H2Om6utfeB2kjrocJG9ZQPy0UQhWvgcFp9I4KnWRr1L H/yvmSM2EejR7kQHp4OBrb55RBsX4tojvr1UU+fWRuy988prwBVBdKj6 EElNwteQCosJHxVzqP0z6UpP9i5rUkRNGOD7OvdwF8ynBV93F4FpOI9r yuKzz0hdE3YAQJztOY84VuLkXM2DPs51LR6ftibxswUwoeUg04QUS7py gzn1z9en99oUgX+Lic6fLKc5Q0LpeZGhW0qBCY2CB9KEaRth+ZCD6WEU tjOBCw==
;; Received 525 bytes from 8.8.8.8#53(8.8.8.8) in 249 ms

ninja.			172800	IN	NS	v0n2.nic.ninja.
ninja.			172800	IN	NS	v2n1.nic.ninja.
ninja.			172800	IN	NS	v0n0.nic.ninja.
ninja.			172800	IN	NS	v0n1.nic.ninja.
ninja.			172800	IN	NS	v2n0.nic.ninja.
ninja.			172800	IN	NS	v0n3.nic.ninja.
ninja.			86400	IN	DS	46082 8 2 C8F816A7A575BDB2F997F682AAB2653BA2CB5EDDB69B036A30742A33 BEFAF141
ninja.			86400	IN	RRSIG	DS 8 1 86400 20221130050000 20221117040000 18733 . xoEolCAm4d+f6LxulPa/lnCwKuwWLPI8LzlgmOVvMNL7z8J/21FqTWBu 4tZT8KZTciAvcTcRo3TDAg0Qr48QvJI30ld4yYa81HGHpVKVuTSoNCtn FnxvCuZmqDY+aFM/zn9jSTdCcT8EhwLJrsHq/zj/iasymLZ/UvanJo8j X/PRSorGfWJjUeDSSjCOpOITjRLqzHeBcY9+Qpf7O5fDguqtkhzc/8pS qKmjUh2B+yJA4QgDSaoxdv9LRQIvdSL1Iwq9eAXnl9azJy3GbVIUVZCw bA8ZsFYhw9sQbk39ZDi3K4pS717uymh4RBlk4r/5EuqdKBpWFYdOW4ZC EGDBcg==
;; Received 763 bytes from 198.41.0.4#53(a.root-servers.net) in 285 ms

andrewbaker.ninja.	3600	IN	NS	ns-1363.awsdns-42.org.
andrewbaker.ninja.	3600	IN	NS	ns-1745.awsdns-26.co.uk.
andrewbaker.ninja.	3600	IN	NS	ns-462.awsdns-57.com.
andrewbaker.ninja.	3600	IN	NS	ns-983.awsdns-58.net.
4vnuq0b3phnjevus6h4meuj446b44iqj.ninja.	3600 IN	NSEC3 1 1 10 332539EE7F95C32A 4VVVNRI7K3EH48N753IKM6TUI5G921J7  NS SOA RRSIG DNSKEY NSEC3PARAM
4vnuq0b3phnjevus6h4meuj446b44iqj.ninja.	3600 IN	RRSIG NSEC3 8 2 3600 20221208121502 20221117111502 22878 ninja. RIuQHRcUrHqMNg1lab6s/oRNmflV4e+8r2553miiZdlGqCl8Q05+e1f5 /AY0enkAaG4DvoXCAlwroL7B7iYgivgrmPXklPTEahnzdeZV76UWimRs 2WjKLI9DSUsSl5yPZBDloqYBxhQlHwY7RPcKxELX2wO7ld8Dk+cSpQIu CQQ=
dg8umbqgrvdemk76n4dtbddckfghtloo.ninja.	3600 IN	NSEC3 1 1 10 332539EE7F95C32A DGG261SH46I7K27S1MPEID8CER0BFH07  NS DS RRSIG
dg8umbqgrvdemk76n4dtbddckfghtloo.ninja.	3600 IN	RRSIG NSEC3 8 2 3600 20221130155636 20221109145636 22878 ninja. b3g1om7FYmaboSk49ZuQC/wiyuZ0zQXOs/HbfrtDP1wUGyvXMAG1ofik //wSTVEvi7bufrbKUCSkBrxiBweSkRIKokaB/5j90Izpb9znaN0MWmOQ gywML7TQ3etOWb9s8L/oUmiBUUUtBtPGAy/e4hsbuYKQt+awJZVhR4G/ GBM=
;; Received 691 bytes from 65.22.21.4#53(v0n1.nic.ninja) in 892 ms

andrewbaker.ninja.	300	IN	A	13.244.140.33
andrewbaker.ninja.	172800	IN	NS	ns-1254.awsdns-28.org.
andrewbaker.ninja.	172800	IN	NS	ns-1514.awsdns-61.org.
andrewbaker.ninja.	172800	IN	NS	ns-1728.awsdns-24.co.uk.
andrewbaker.ninja.	172800	IN	NS	ns-1875.awsdns-42.co.uk.
andrewbaker.ninja.	172800	IN	NS	ns-491.awsdns-61.com.
andrewbaker.ninja.	172800	IN	NS	ns-496.awsdns-62.com.
andrewbaker.ninja.	172800	IN	NS	ns-533.awsdns-02.net.
andrewbaker.ninja.	172800	IN	NS	ns-931.awsdns-52.net.
;; Received 328 bytes from 205.251.195.215#53(ns-983.awsdns-58.net) in 53 ms

As you can see above, the first set of results are the NS (nameservers) for the root domain (.), followed by the NS for .ninja, then finally the NS for andrewbaker.ninja (hosted in AWS).

Macbook: Show which applications have ports open and to what IP address

Below is a dump of examples of doing pretty much the same thing differently. I mostly use netstat and lsof, coupled with some bash scripts.

You can argue that this is overkill, but below is a simple bash function that you can paste into terminal and call it whenever you want to see which application/process IDs have open ports:

macnst (){ netstat -Watnlv | grep LISTEN | awk '{"ps -o comm= -p " $9 | getline procname;colred="\033[01;31m";colclr="\033[0m"; print colred "proto: " colclr $1 colred " | addr.port: " colclr $4 colred " | pid: " colclr $9 colred " | name: " colclr procname; }' | column -t -s "|" }

## Example: 
proto: tcp46 addr.port: *.8770 pid: 1459 name: /usr/libexec/sharingd proto: tcp4 addr.port: 127.0.0.1.9000 pid: 787 name: /Applications/Zscaler/Zscaler.app/Contents/PlugIns/ZscalerTunnel proto: tcp4 addr.port: 100.64.0.1.9000 pid: 787 name: /Applications/Zscaler/Zscaler.app/Contents/PlugIns/ZscalerTunnel proto: tcp6 addr.port: *.56365 pid: 1080 name: /usr/libexec/rapportd proto: tcp4 addr.port: *.56365 pid: 1080 name: /usr/libexec/rapportd proto: tcp4 addr.port: 100.64.0.1.9010 pid: 787 name: /usr/libexec/rapportd proto: tcp6 addr.port: ::1.53 pid: 784 name: /opt/homebrew/opt/dnsmasq/sbin/dnsmasq proto: tcp6 addr.port: fe80::1%lo0.53 pid: 784 name: /opt/homebrew/opt/dnsmasq/sbin/dnsmasq proto: tcp6 addr.port: fe80::244b:70ff:fe0a:ffaa%anpi2.53 pid: 784 name: /opt/homebrew/opt/dnsmasq/sbin/dnsmasq proto: tcp6 addr.port: fe80::244b:70ff:fe0a:ffa8%anpi0.53 pid: 784 name: /opt/homebrew/opt/dnsmasq/sbin/dnsmasq proto: tcp6 addr.port: fe80::244b:70ff:fe0a:ffa9%anpi1.53 pid: 784 name: /opt/homebrew/opt/dnsmasq/sbin/dnsmasq proto: tcp6 addr.port: fe80::109d:a6ff:fed1:244c%awdl0.53 pid: 784 name: /opt/homebrew/opt/dnsmasq/sbin/dnsmasq proto: tcp6 addr.port: fe80::109d:a6ff:fed1:244c%llw0.53 pid: 784 name: /opt/homebrew/opt/dnsmasq/sbin/dnsmasq proto: tcp4 addr.port: 127.0.0.1.53 pid: 784 name: /opt/homebrew/opt/dnsmasq/sbin/dnsmasq

Below is an alternative to the above using netstat:

$ netstat -ap tcp | grep ESTABLISHED 
tcp4 0 0 192.168.123.227.57278 52.114.104.174.https ESTABLISHED tcp4 0 0 100.64.0.1.cslistener 52.114.104.174.57277 ESTABLISHED tcp4 0 0 100.64.0.1.57277 52.114.104.174.https ESTABLISHED tcp4 0 0 100.64.0.1.57275 13.89.179.10.https ESTABLISHED tcp4 0 0 100.64.0.1.57262 40.79.141.153.https ESTABLISHED tcp4 0 0 100.64.0.1.57258 52.97.201.226.https ESTABLISHED tcp4 0 0 192.168.123.227.57250 52.113.194.132.https ESTABLISHED tcp4 0 0 100.64.0.1.cslistener 52.113.194.132.57249 ESTABLISHED tcp4 0 0 100.64.0.1.57249 52.113.194.132.https ESTABLISHED tcp4 0 0 100.64.0.1.57240 193.0.160.129.https ESTABLISHED tcp4 0 0 100.64.0.1.57239 jnb02s11-in-f6.1.https ESTABLISHED tcp4 0 0 100.64.0.1.57238 944.bm-nginx-loa.https ESTABLISHED tcp4 0 0 100.64.0.1.57237 159.248.227.35.b.https ESTABLISHED tcp4 0 0 100.64.0.1.57236 ip98.ip-51-75-86.https ESTABLISHED tcp4 0 0 100.64.0.1.57235 185.94.180.126.https ESTABLISHED tcp4 0 0 100.64.0.1.57234 a-0001.a-msedge..https ESTABLISHED tcp4 0 0 100.64.0.1.57233 a-0001.a-msedge..https ESTABLISHED

If you want to find the processes listening on a specific port, use the following:

sudo lsof -nP -i4TCP:9000 | grep LISTEN
ZscalerTu 787 root   49u  IPv4 0xfa4872984902c87f      0t0  TCP 100.64.0.1:9000 (LISTEN)
ZscalerTu 787 root   64u  IPv4 0xfa48729849d9138f      0t0  TCP 127.0.0.1:9000 (LISTEN)
## Then you can kill the process using: sudo kill -9 <PID>
sudo kill 787

Following the theme of creating bash scripts for the sake of it, below is a simple listening script:

listening() {
    if [ $# -eq 0 ]; then
        sudo lsof -iTCP -sTCP:LISTEN -n -P
    elif [ $# -eq 1 ]; then
        sudo lsof -iTCP -sTCP:LISTEN -n -P | grep -i --color $1
    else
        echo "Usage: listening [pattern]"
    fi
}

## Example
% listening 9000
ZscalerTu 38629     root   13u  IPv4 0xfa48729848a2f4bf      0t0  TCP 100.64.0.1:9000 (LISTEN)
ZscalerTu 38629     root   14u  IPv4 0xfa48729849edffcf      0t0  TCP 127.0.0.1:9000 (LISTEN)

Next up, using lsof to view TCP sessions (-i4 : IPV4; -n : prevent conversion to host name):

sudo lsof -i4 -n -P | grep TCP | grep ESTABLISHED
identitys  1205       cp363412   37u  IPv6 0xfa487293786896c7      0t0    TCP [fe80:16::c79c:1b6f:a073:9eca]:1024->[fe80:16::e858:3f4a:1724:69c1]:1024 (ESTABLISHED)
identitys  1205       cp363412   38u  IPv6 0xfa4872937868cb47      0t0    TCP [fe80:16::c79c:1b6f:a073:9eca]:1025->[fe80:16::e858:3f4a:1724:69c1]:1026 (ESTABLISHED)
identitys  1205       cp363412   39u  IPv6 0xfa4872937868cb47      0t0    TCP [fe80:16::c79c:1b6f:a073:9eca]:1025->[fe80:16::e858:3f4a:1724:69c1]:1026 (ESTABLISHED)
Google     2149       cp363412   20u  IPv4 0xfa48729848bee74f      0t0    TCP 100.64.0.1:58416->172.217.170.10:443 (ESTABLISHED)
Google     2149       cp363412   26u  IPv4 0xfa48729848bfb25f      0t0    TCP 100.64.0.1:58600->216.58.223.132:443 (ESTABLISHED)
Google     2149       cp363412   30u  IPv4 0xfa48729848aa938f      0t0    TCP 100.64.0.1:58388->151.101.3.9:443 (ESTABLISHED)
Google     2149       cp363412   33u  IPv4 0xfa4872984590512f      0t0    TCP 100.64.0.1:58601->216.58.223.132:443 (ESTABLISHED)
Google     2149       cp363412   35u  IPv4 0xfa487298489734bf      0t0    TCP 100.64.0.1:58602->172.217.170.170:443 (ESTABLISHED)
Google     2149       cp363412   36u  IPv4 0xfa487298489cf25f      0t0    TCP 100.64.0.1:58470->13.244.140.33:443 (ESTABLISHED)
Google     2149       cp363412   41u  IPv4 0xfa487298458fde9f      0t0    TCP 100.64.0.1:58231->172.217.170.10:443 (ESTABLISHED)
Google     2149       cp363412   42u  IPv4 0xfa48729848b25e9f      0t0    TCP 100.64.0.1:58451->142.250.27.188:443 (ESTABLISHED)
Google     2149       cp363412   45u  IPv4 0xfa48729848a8fd6f      0t0    TCP 100.64.0.1:58452->142.250.27.188:443 (ESTABLISHED)
Google     2149       cp363412   47u  IPv4 0xfa48729848b19c3f      0t0    TCP 100.64.0.1:58473->172.217.170.99:443 (ESTABLISHED)
Google     2149       cp363412   57u  IPv4 0xfa48729849ee1c3f      0t0    TCP 100.64.0.1:57722->192.0.78.23:443 (ESTABLISHED)
Google     2149       cp363412   60u  IPv4 0xfa4872984908325f      0t0    TCP 100.64.0.1:57973->198.252.206.25:443 (ESTABLISHED)
WhatsApp   2225       cp363412   21u  IPv4 0xfa4872984590674f      0t0    TCP 192.168.123.227:58288->102.132.100.60:443 (ESTABLISHED)
UPMServic  2333           root  248u  IPv4 0xfa48729848b1325f      0t0    TCP 192.168.123.227:56364->147.161.204.128:443 (ESTABLISHED)
Microsoft 25966       cp363412   44u  IPv4 0xfa48729849d9dc3f      0t0    TCP 100.64.0.1:58615->52.112.238.155:443 (ESTABLISHED)
Microsoft 37667       cp363412   20u  IPv4 0xfa48729849ef9e9f      0t0    TCP 100.64.0.1:58566->52.113.194.132:443 (ESTABLISHED)
Microsoft 37667       cp363412   22u  IPv4 0xfa4872984901887f      0t0    TCP 100.64.0.1:58378->52.112.120.216:443 (ESTABLISHED)
Microsoft 37667       cp363412   23u  IPv4 0xfa487298489e34bf      0t0    TCP 100.64.0.1:58536->20.42.65.84:443 (ESTABLISHED)
Microsoft 37667       cp363412   24u  IPv4 0xfa4872984591487f      0t0    TCP 100.64.0.1:58613->52.112.238.155:443 (ESTABLISHED)
Microsoft 37667       cp363412   27u  IPv4 0xfa48729848bed12f      0t0    TCP 100.64.0.1:58549->52.114.228.1:443 (ESTABLISHED)
Microsoft 37678       cp363412   51u  IPv4 0xfa487298489ddc3f      0t0    TCP 192.168.123.227:56382->52.112.120.204:443 (ESTABLISHED)
Microsoft 37678       cp363412   59u  IPv4 0xfa4872984902912f      0t0    TCP 100.64.0.1:56147->52.114.224.23:443 (ESTABLISHED)
ZscalerTu 38629           root    8u  IPv4 0xfa48729848bde74f      0t0    TCP 100.64.0.1:9000->52.114.228.1:58549 (ESTABLISHED)
ZscalerTu 38629           root    9u  IPv4 0xfa48729849061c3f      0t0    TCP 192.168.123.227:58330->13.244.131.129:443 (ESTABLISHED)
ZscalerTu 38629           root   10u  IPv4 0xfa48729848a9de9f      0t0    TCP 192.168.123.227:58550->52.114.228.1:443 (ESTABLISHED)
ZscalerTu 38629           root   16u  IPv4 0xfa48729849eea74f      0t0    TCP 100.64.0.1:9000->52.113.194.132:58566 (ESTABLISHED)
ZscalerTu 38629           root   17u  IPv4 0xfa4872984904f25f      0t0    TCP 192.168.123.227:58567->52.113.194.132:443 (ESTABLISHED)
ZscalerTu 38629           root   20u  IPv4 0xfa487298489e725f      0t0    TCP 100.64.0.1:9000->52.112.238.155:58613 (ESTABLISHED)

For analysing what is listening to a port lsof also gives you a short history of the state of the connection:

sudo lsof -i tcp:9000
COMMAND     PID USER   FD   TYPE             DEVICE SIZE/OFF NODE NAME
ZscalerTu 53971 root   13u  IPv4 0xfa4872984902f4bf      0t0  TCP 100.64.0.1:cslistener (LISTEN)
ZscalerTu 53971 root   14u  IPv4 0xfa48729848bdf25f      0t0  TCP localhost:cslistener (LISTEN)
ZscalerTu 53971 root   18u  IPv4 0xfa487298489f112f      0t0  TCP 100.64.0.1:cslistener->147.161.204.128:63038 (ESTABLISHED)
ZscalerTu 53971 root   19u  IPv4 0xfa487298489f69af      0t0  TCP 100.64.0.1:cslistener->147.161.204.128:63036 (CLOSE_WAIT)
ZscalerTu 53971 root   24u  IPv4 0xfa4872984897674f      0t0  TCP 100.64.0.1:cslistener->a23-2-112-62.deploy.static.akamaitechnologies.com:63040 (ESTABLISHED)
ZscalerTu 53971 root   28u  IPv4 0xfa487298489d138f      0t0  TCP localhost:63045->localhost:cslistener (CLOSE_WAIT)
ZscalerTu 53971 root   29u  IPv4 0xfa4872984900912f      0t0  TCP localhost:cslistener->localhost:63045 (FIN_WAIT_2)

Above you can see port 9000 (the zscaler port); after I have restarted zscaler. It shows the state transitions of the port.

Macbook: MyTraceRoute an alternative ICMP route tracing which works with Zscaler / Zero Trust architecture

If your on a zero trust network adapter like zscaler or netskope, you will see that traceroute doesn’t work as expected. The article below shows how to install mtr (my trace route) using brew:

## Install xcode
xcode-select --install
## Install mtr
brew install mtr


Next we need to change the owner of the MTR package and it’s permissions (otherwise you will need to run it as root every time):

sudo chown root /opt/homebrew/Cellar/mtr/0.95/sbin/mtr-packet
sudo chmod 4755 /opt/homebrew/Cellar/mtr/0.95/sbin/mtr-packet
## Symlink to the new mtr package instead of the default MAC version
ln -s /opt/homebrew/Cellar/mtr/0.95/sbin/mtr /opt/homebrew/bin/
ln -s /opt/homebrew/Cellar/mtr/0.95/sbin/mtr-packet /opt/homebrew/bin/


To run a rolling traceroute with ICMP echo’s use the following:

mtr andrewbaker.ninja
Keys:  Help   Display mode   Restart statistics   Order of fields   quit
                                       Packets               Pings
 Host                                Loss%   Snt   Last   Avg  Best  Wrst StDev

The issue is that Zscaler will attempt to tunnel this traffic. This can be observed by viewing your current routes:

netstat -rn
Internet:
Destination        Gateway            Flags           Netif Expire
default            192.168.0.1        UGScg             en0
1                  100.64.0.1         UGSc            utun6
2/7                100.64.0.1         UGSc            utun6
4/6                100.64.0.1         UGSc            utun6
8/5                100.64.0.1         UGSc            utun6
10/12              100.64.0.1         UGSc            utun6
10.1.30.3          100.64.0.1         UGHS            utun6
10.1.30.15         100.64.0.1         UGHS            utun6
10.1.31/24         100.64.0.1         UGSc            utun6
10.1.31.3          100.64.0.1         UGHS            utun6
10.1.31.41         100.64.0.1         UGHS            utun6
10.1.31.101        100.64.0.1         UGHS            utun6
10.1.31.103        100.64.0.1         UGHS            utun6
10.10.0.11         100.64.0.1         UGHS            utun6
10.10.0.12         100.64.0.1         UGHS            utun6
10.10.160.86       100.64.0.1         UGHS            utun6

As you can see from the above, it lists the routes that are being sent to the Zscaler tunnel interface “utun6” (this is unique to your machine but will look similar). To get around this you can specify the source interface the MTR should run from with the “-I” flag. Below we instruct mtr to use en0 (the lan cable):

mtr andrewbaker.ninja -I en0
                                                                                                                                                                                                            Packets               Pings
 Host                                                                                                                                                                                                     Loss%   Snt   Last   Avg  Best  Wrst StDev
 1. unfisecuregateway                                                                                                                                                                                      1.8%    56    2.0   2.2   1.5   4.5   0.6
 2. 41.71.48.65                                                                                                                                                                                            0.0%    56    4.2   8.1   3.1  28.3   6.0
 3. 41.74.176.249                                                                                                                                                                                          0.0%    56    4.2   4.5   3.4   8.2   0.9
 4. 196.10.140.105                                                                                                                                                                                         0.0%    55    3.0   4.0   2.6  18.8   2.4
 5. 52.93.57.88                                                                                                                                                                                            0.0%    55    5.1   6.3   3.7  12.4   2.0
 6. 52.93.57.103                                                                                                                                                                                           0.0%    55    4.9   4.1   2.6  12.5   1.5
 7. (waiting for reply)
 8. 150.222.94.230                                                                                                                                                                                         0.0%    55    4.0   4.8   3.1  13.8   1.8
 9. 150.222.94.243                                                                                                                                                                                         0.0%    55    4.3   5.3   2.9  37.6   5.2
10. 150.222.94.242                                                                                                                                                                                         0.0%    55   15.2   4.9   2.9  15.2   2.2
11. 150.222.94.237                                                                                                                                                                                         0.0%    55    3.4   5.7   3.1  18.9   2.9
12. 150.222.93.218                                                                                                                                                                                         0.0%    55    4.6   5.5   3.8  11.4   1.3
13. (waiting for reply)

MTR supports TCP, UDP and SCTP based traceroutes. This is useful when testing path latency and packet loss in external or internal networks where QoS is applied to different protocols and ports. Multiple flags are available (man mtr), but for a TCP based MTR use  -T (indicates TCP should be used) and -P (port to trace to):

mtr andrewbaker.ninja -T -P 443 -I en0

Ping specifying source interface

Ping supports specifying the source interface you would like to initiate the ping from. The “-S” flag indicates that the following IP is the source IP address the ping should be done from. This is useful if you want to ping using an internal resource bypassing a route manipulator tool such as Zscaler.

ping outlook.office.com -S 10.220.64.37

Macbook/Linux: Secure Copy from your local machine to an EC2 instance

I always forget the syntax of SCP and so this is a short article with a simple example of how to SCP a file from your laptop to your EC2 instance and how to copy it back from EC2 to your laptop:

Copying from Laptop to EC2

scp -i "mylocalpemfile.pem" mylocalfile.zip ec2-user@myEc2DnsOrIpAdress:/home/mydestinationfolder

scp -i identity_file.pem source_file.extention username@public_ipv4_dns:/remote_path

scp: Secure copy protocol
-i: Identity file
source_file.extension: The file that you want to copy
username: Username of the remote system (ubuntu for Ubuntu, ec2-user for Linux AMI or bitnami for wordpress)
public_ipv4_dns: DNS/IPv4 address of an instance
remote_path: Destination path

Copying from EC2 to your Laptop

scp -i "mylocalpemfile.pem" ec2-user@myEc2DnsOrIpAdress:/home/myEc2Folder/myfile.zip /Users/accountNmae/Dow
nloads
  • scp -i identity_file.pem username@public_ipv4_dns:/remote_path/source_file.extension ~/destination_local_path
Ex: scp -i access.pem bitnami@0.0.0.0:/home/bitnami/temp.txt ~/Documents/destination_dir

Macbook: Alternative to Ping (using TCP rather than ICMP)

A lot of companies are moving to ZTNA (Zero Trust Network Architecture). This is generally a good thing, it helps cyber posture and it and makes life a lot easier as you no longer need to login to VPN tunnels to manage your cloud environment/s.

But one of the few downsides of ZTNA is that (by definition) it cannot support ICMP packets. So how do things like Ping and Trace Route work? Well in general they don’t. If you’re on windows you can use a great SysInternals tool call PsPing, but for Mac you will need TCP ping. Below are the installation details for TCP Ping:

brew install wget
wget https://github.com/paradiseduo/tcping/releases/download/3.5/tcping.zip
unzip tcping.zip
chmod +x tcping
sudo mv tcping /usr/local/bin/
sudo xattr -rd com.apple.quarantine /usr/local/bin/tcping

Examples using TcpPing:

## Domain Ping
tcping -c 5 andrewbaker.ninja 443
## IPV4 Ping
tcping -c 5 13.244.140.33: 443
## IPV6 Ping
tcping -c 3 ::1 8080

Key Parameters

You can go directly to https://github.com/paradiseduo/tcping or if your lazy just use the below.

➜ tcping --help

      dP                     oo
      88
    d8888P .d8888b. 88d888b. dP 88d888b. .d8888b.    {Version: 3.5}
      88   88       88    88 88 88    88 88    88
      88   88.      88.  .88 88 88    88 88.  .88
      dP   `88888P  88Y888P  dP dP    dP `8888P88
                    88                        .88
                    dP                    d8888P

tcping is a ping over tcp connection.

Examples:
    1. ping over tcp with custom port 10 times
        > tcping www.baidu.com 80
    2. ping over tcp with custom port 5 times
        > tcping -c 5 www.baidu.com 443

USAGE: tcping [--count <count>] [--interval <interval>] <ip> <port>

ARGUMENTS:
    <ip>                        The IP or Domain to tcping.
    <port>                      The port to tcping.

OPTIONS:
    -c, --count <count>         The number of times to repeat 'tcping'. Default value is 10, Max value is 65535
    -i, --interval <interval>   The request interval(second). Default value is 1 second
    -h, --help                  Show help information.

How Does TCPing works

TCPing measures RTT using the SYN handshake that occurs when a TCP connection is opened. It does this by opening a TCP connection to the destination port with a SYN, and then waits for the SYN ACK back from the destination to determine if the service is up, and to measure RTT. After it receives a SYN ACK, it will then send a RST ACK. This RST (reset) will forcibly close the half-opened TCP connection (preventing you from inadvertently exhausting the server of resources – aka SYN Flood attack).

Bonus: Install Tcp Route Trace

Am too lazy to write another article, so use the below for TCP route trace:

brew install tcptraceroute

Examples using Tcp Traceroute:

sudo tcptraceroute andrewbaker.ninja 443

Macbook: View the list of DNS nameservers used for resolution

To view the list of nameservers your mac is using, simply open Terminal and paste the following:

myMac ~ % scutil --dns | grep 'nameserver*'
  nameserver[0] : 100.64.0.1
  nameserver[0] : 9.9.9.9
  nameserver[1] : 1.1.1.1
  nameserver[2] : 8.8.8.8
  nameserver[0] : 9.9.9.9
  nameserver[1] : 1.1.1.1
  nameserver[2] : 8.8.8.8

Alternatively, you can copy the DNS servers to clipboard directly from the command line (using pbcopy):

networksetup -getdnsservers Wi-Fi | pbcopy